Coverage for skema/gromet/metadata/text_extraction_metadata.py: 45%
58 statements
« prev ^ index » next coverage.py v7.5.0, created at 2024-04-30 17:15 +0000
« prev ^ index » next coverage.py v7.5.0, created at 2024-04-30 17:15 +0000
1# coding: utf-8
3"""
4 GroMEt Metadata spec
6 Grounded Model Exchange (GroMEt) Metadata schema specification __Using Swagger to Generate Class Structure__ To automatically generate Python or Java models corresponding to this document, you can use [swagger-codegen](https://swagger.io/tools/swagger-codegen/). We can use this to generate client code based off of this spec that will also generate the class structure. 1. Install via the method described for your operating system [here](https://github.com/swagger-api/swagger-codegen#Prerequisites). Make sure to install a version after 3.0 that will support openapi 3. 2. Run swagger-codegen with the options in the example below. The URL references where the yaml for this documentation is stored on github. Make sure to replace CURRENT_VERSION with the correct version. (The current version is `0.1.4`.) To generate Java classes rather, change the `-l python` to `-l java`. Change the value to the `-o` option to the desired output location. ``` swagger-codegen generate -l python -o ./client -i https://raw.githubusercontent.com/ml4ai/automates-v2/master/docs/source/gromet_metadata_v{CURRENT_VERSION}.yaml ``` 3. Once it executes, the client code will be generated at your specified location. For python, the classes will be located in `$OUTPUT_PATH/swagger_client/models/`. For java, they will be located in `$OUTPUT_PATH/src/main/java/io/swagger/client/model/` If generating GroMEt Metadata schema data model classes in SKEMA (AutoMATES), then after generating the above, follow the instructions here: ``` <automates>/automates/model_assembly/gromet/metadata/README.md ``` # noqa: E501
8 OpenAPI spec version: 0.1.8
9 Contact: claytonm@arizona.edu
10 Generated by: https://github.com/swagger-api/swagger-codegen.git
11"""
13import pprint
14import re # noqa: F401
16import six
17from skema.gromet.metadata.metadata import Metadata # noqa: F401,E501
19class TextExtractionMetadata(Metadata):
20 """NOTE: This class is auto generated by the swagger code generator program.
22 Do not edit the class manually.
23 """
24 """
25 Attributes:
26 swagger_types (dict): The key is attribute name
27 and the value is attribute type.
28 attribute_map (dict): The key is attribute name
29 and the value is json key in definition.
30 """
31 swagger_types = {
32 'gromet_type': 'str',
33 'grounding': 'list[TextGrounding]'
34 }
35 if hasattr(Metadata, "swagger_types"):
36 swagger_types.update(Metadata.swagger_types)
38 attribute_map = {
39 'gromet_type': 'gromet_type',
40 'grounding': 'grounding'
41 }
42 if hasattr(Metadata, "attribute_map"):
43 attribute_map.update(Metadata.attribute_map)
45 def __init__(self, gromet_type='TextExtractionMetadata', grounding=None, *args, **kwargs): # noqa: E501
46 """TextExtractionMetadata - a model defined in Swagger""" # noqa: E501
47 self._gromet_type = None
48 self._grounding = None
49 self.discriminator = None
50 if gromet_type is not None:
51 self.gromet_type = gromet_type
52 if grounding is not None:
53 self.grounding = grounding
54 Metadata.__init__(self, *args, **kwargs)
56 @property
57 def gromet_type(self):
58 """Gets the gromet_type of this TextExtractionMetadata. # noqa: E501
61 :return: The gromet_type of this TextExtractionMetadata. # noqa: E501
62 :rtype: str
63 """
64 return self._gromet_type
66 @gromet_type.setter
67 def gromet_type(self, gromet_type):
68 """Sets the gromet_type of this TextExtractionMetadata.
71 :param gromet_type: The gromet_type of this TextExtractionMetadata. # noqa: E501
72 :type: str
73 """
75 self._gromet_type = gromet_type
77 @property
78 def grounding(self):
79 """Gets the grounding of this TextExtractionMetadata. # noqa: E501
81 Array of grounding hypotheses # noqa: E501
83 :return: The grounding of this TextExtractionMetadata. # noqa: E501
84 :rtype: list[TextGrounding]
85 """
86 return self._grounding
88 @grounding.setter
89 def grounding(self, grounding):
90 """Sets the grounding of this TextExtractionMetadata.
92 Array of grounding hypotheses # noqa: E501
94 :param grounding: The grounding of this TextExtractionMetadata. # noqa: E501
95 :type: list[TextGrounding]
96 """
98 self._grounding = grounding
100 def to_dict(self):
101 """Returns the model properties as a dict"""
102 result = {}
104 for attr, _ in six.iteritems(self.swagger_types):
105 value = getattr(self, attr)
106 if isinstance(value, list):
107 result[attr] = list(map(
108 lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
109 value
110 ))
111 elif hasattr(value, "to_dict"):
112 result[attr] = value.to_dict()
113 elif isinstance(value, dict):
114 result[attr] = dict(map(
115 lambda item: (item[0], item[1].to_dict())
116 if hasattr(item[1], "to_dict") else item,
117 value.items()
118 ))
119 else:
120 result[attr] = value
121 if issubclass(TextExtractionMetadata, dict):
122 for key, value in self.items():
123 result[key] = value
125 return result
127 def to_str(self):
128 """Returns the string representation of the model"""
129 return pprint.pformat(self.to_dict())
131 def __repr__(self):
132 """For `print` and `pprint`"""
133 return self.to_str()
135 def __eq__(self, other):
136 """Returns true if both objects are equal"""
137 if not isinstance(other, TextExtractionMetadata):
138 return False
140 return self.__dict__ == other.__dict__
142 def __ne__(self, other):
143 """Returns true if both objects are not equal"""
144 return not self == other