README for the equation detection module

Running the equation detection module

  1. Clones the AutoMATES repo

  2. Clone the matterport Mask-RCNN repo inside the detection subdirectory

    cd automates/equation_extraction/detection
    git clone https://github.com/matterport/Mask_RCNN.git
    
  3. Download and extract data

    • Contact us for the data tar file, we don’t have rights to post…

      tar -zxvf output_objdet.tar.gz
      
  4. Build the docker container

     docker build -t maskrcnn-gpu .
    
  5. Run the docker container using the desired mode (train or detect) and base model (i.e., imagenet)

    • train:

      sudo ./docker.sh python3 equation.py train --dataset=dataset --subset=train --weights=imagenet
      
    • detect (i.e., find AABBs for the test images):

      sudo ./docker.sh python3 equation.py detect --dataset=dataset --subset=test --weights=last
      

      Note: updates with corresponding timestamps will be added with more information regarding the detection model training and evaluation.